WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 1 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Weininger, A.; Weininger S. "wwavePDB Tutorial #1:

Isolating a sonic hedgehog/glycoprotein molecular switch" *Weininger Works Technical Notes* (2015) May 21;5:1-23

Sonic Hedgehog/Glycoprotein Molecular Switch

wwavePDB Overview

wwavePDB inputs a PDB file and outputs a PDB file and a sets file. The PDB file contains all of the atoms that satisfy the spatial constraints selected when running wwavePDB. Output PDB files can be displayed with the input PDB structure for comparison. The sets file contains the information in the PDB file listed as specific sets of atom contacts.

wwavePDB Overview Page describes wwavePDB command line syntax.

Tutorial Overview

This tutorial uses wwavePDB to examine multiple, unrelated molecular structures in order to isolate and interpret a specific molecular interaction.

In this example, the environments of zinc atoms are analyzed and used to isolate a molecular switch between sonic hedgehog protein (SHH) and a fibronection III (FIII) domain. The example shows the advantage of using the wwavePDB analysis of multiple structures to interpret a single structural feature.

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 2 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

This tutorial uses the following structure files:

1AIY	(NMR structure of human insulin hexamer)	(PDB)	(fasta)	(summary)
1MEY	(zinc finger bound to DNA)	(PDB)	(fasta)	(summary)
3D1M	(sonic hedgehog protein bound to 3 rd domain of fibronectin)	(PDB)	(fasta)	(summary)

Insulin (1AIY.pdb) is a hormone involved in glucose regulation. The zinc finger protein (1MEY.pdb) is a DNA-binding protein involved in transcriptional regulation. Sonic hedgehog (3D1M.pdb) is a factor involved in neural patterning, repair, and maintenance. Sonic hedgehog (SHH) orchestrates the development and maintenance of the nervous system starting with the development of the neural tube. SHH binds in a concentration-dependent manner to glycoproteins that govern neurite cell adhesion and spreading.

wwavePDB was used to isolate a molecular switch between SHH and a glycoprotein, fibronectin. In order to isolate the switch, the wwavePDB commands were structured to provide information on the environments of molecules bound to SHH and fibronectin, including mutual (SHH-fibronectin) binding, zinc atom binding, and calcium atom binding. The isolation of the SHH-fibronectin molecular switch required a detailed examination of other protein structures. In particular, it was necessary to examine the way in which other structures bind zinc in order to isolate the zinc-binding components of the molecular switch.

This example explains how wwavePDB was used to understand and isolate the residues in SHH and fibronectin that comprise the zinc-binding components of the molecular switch. Three protein structures, each with bound molecules that include zinc, are used as example input to wwavePDB: 1AIY.pdb, 1MEY.pdb, and 3D1M.pdb. The proteins in the examples structures have unrelated functions but all bind zinc.

Tutorial Content

wwavePDB is a program with a unix command line interface. wwavePDB accepts both terse single character options (e.g. "-i 3D1M.pdb") and more verbose keyword options (e.g. "-input=3D1M.pdb"). Both terse and verbose options are shown in this tutorial as separately colored entries.

In this example, we use wwavePDB to explore the environment of bound zinc in these three exemplary proteins. In this example, wwavePDB is directed to:

Input the PDB files:

"input=1AIY.pdb"	or	"-i 1AIY.pdb"
"input=1MEY.pdb"	or	"-i 1MEY.pdb"
"input=3D1M.pdb"	or	"-i 3D1M.pdb"

Output a PDB file with a name that includes a specification of the protein and the specified distance range:

```
"--output=1AIY_3.0" Or "-o 1AIY_3.0"
"--output=1AIY_3.5" Or "-o 1AIY_3.5"
"--output=1AIY_4.0" Or "-o 1AIY_4.0"
"--output=1AIY_4.5" Or "-o 1AIY_4.5"
"--output=1AIY_5.0" Or "-o 1AIY_5.0"
```

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 3 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

```
"--output=1MEY_3.0" Or "-o 1MEY_3.0"

"--output=1MEY_3.5" Or "-o 1MEY_3.5"

"--output=1MEY_4.0" Or "-o 1MEY_4.0"

"--output=1MEY_4.5" Or "-o 1MEY_4.5"

"--output=1MEY_5.0" Or "-o 1MEY_5.0"

"--output=3D1M_3.0" Or "-o 3D1M_3.0"

"--output=3D1M_4.0" Or "-o 3D1M_3.5"

"--output=3D1M_4.0" Or "-o 3D1M_4.0"

"--output=3D1M_4.5" Or "-o 3D1M_4.5"

"--output=3D1M_5.0" Or "-o 3D1M_5.0"
```

Output atoms that, as one requirement, must be found at distances from another atom that is at least one Angstrom:

"--minimum=1.0" Or "-a 1.0"

to at the most three Angstroms:

"--maximum=3.0" Or "-z 3.0"

to at the most three and a half Angstroms:

"--maximum=3.5" Or "-z 3.5"

to at the most four Angstroms:

"--maximum=4.0" Or "-z 4.0"

to at the most four and a half Angstroms:

```
"--maximum=4.5" Or "-z 4.5"
```

to at the most five Angstroms:

"--maximum=5.0" or "-z 5.0"

Output atoms that can be from any protein chain but, as one requirement, must have a heteroatom (including zinc) within the specified distance range:

"--restrict=any_chains,atom_and_hetatm" Or "-r 3c"

Output any atoms or hetatoms within the previous specifications:

```
"--filter=output_any_atom_type" Or "-f 6"
```

Output a sets file that specifies the atoms in contact with each heteroatom:

"--sets" or "<mark>-s</mark>"

The complete wwavePDB command lines for the proteins in this example are:

For 1AIY:

```
wwaves --input=1AIY.pdb --output=1AIY_3.0 \
    --minimum=1.0 --maximum=3.0 \
    --restrict=any_chains,atom_and_hetatm
    --filter=output_any_atom_type --sets
```

WeiningerWorksTM^{21 May 2015 <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 4 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved}

<pre>wwavesinput=1AIY.pdboutput=1AIY_3.5 \ minimum=1.0maximum=3.5 \ restrict=any_chains,atom_and_hetatm \ filter=output_any_atom_typesets</pre>
<pre>wwavesinput=1AIY.pdboutput=1AIY_4.0 \ minimum=1.0maximum=4.0 \ restrict=any_chains,atom_and_hetatm \ filter=output_any_atom_typesets</pre>
<pre>wwavesinput=1AIY.pdboutput=1AIY_4.5 \ minimum=1.0maximum=4.5 \ restrict=any_chains,atom_and_hetatm \ filter=output_any_atom_typesets</pre>
<pre>wwavesinput=1AIY.pdboutput=1AIY_5.0 \ minimum=1.0maximum=5.0 \ restrict=any_chains,atom_and_hetatm \ filter=output_any_atom_typesets</pre>
or
wwaves -i 1AIY.pdb -o 1AIY_3.0 -a 1.0 -z 3.0 -r 3c -f 6 -s
wwaves -i 1AIY.pdb -o 1AIY_3.5 -a 1.0 -z 3.5 -r 3c -f 6 -s
wwaves -i 1AIY.pdb -o 1AIY_4.0 -a 1.0 -z 4.0 -r 3c -f 6 -s
wwaves -i 1AIY.pdb -o 1AIY_4.5 -a 1.0 -z 4.5 -r 3c -f 6 -s
wwaves -i 1AIY.pdb -o 1AIY_5.0 -a 1.0 -z 5.0 -r 3c -f 6 -s

For 1MEY:

wwaves	<pre>input=1MEY.pdboutput=1MEY_3.0 \minimum=1.0maximum=3.0 \restrict=any_chains,atom_and_hetatm \filter=output_any_atom_typesets</pre>	
wwaves	<pre>input=1MEY.pdboutput=1MEY_3.5 \minimum=1.0maximum=3.5 \restrict=any_chains,atom_and_hetatm \filter=output_any_atom_typesets</pre>	
wwaves	<pre>input=1MEY.pdboutput=1MEY_4.0 \minimum=1.0maximum=4.0 \restrict=any_chains,atom_and_hetatm \filter=output_any_atom_typesets</pre>	
wwaves	<pre>input=1MEY.pdboutput=1MEY_4.5 \minimum=1.0maximum=4.5 \restrict=any_chains,atom_and_hetatm \filter=output_any_atom_typesets</pre>	
wwaves	<pre>input=1MEY.pdboutput=1MEY_5.0 \minimum=1.0maximum=5.0 \restrict=any_chains,atom_and_hetatm \filter=output_any_atom_typesets</pre>	
	or	
wwaves	-i 1MEY.pdb -o 1MEY_3.0 -a 1.0 -z 3.0 -r 3c -f	6 -s
wwaves	-i 1MEY.pdb -o 1MEY_3.5 -a 1.0 -z 3.5 -r 3c -f	б-з

wwaves -i 1MEY.pdb -o 1MEY_4.0 -a 1.0 -z 4.0 -r 3c -f 6 -s

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 5 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

> wwaves -i 1MEY.pdb -o 1MEY_4.5 -a 1.0 -z 4.5 -r 3c -f 6 -s wwaves -i 1MEY.pdb -o 1MEY_5.0 -a 1.0 -z 5.0 -r 3c -f 6 -s

For 3D1M:

wwaves	input=3D1M.pdboutput=3D1M_3.0 \												
	<pre>minimum=1.0maximum=3.0 \restrict=any_chains,atom_and_hetatm \filter=output_any_atom_typesets</pre>												
wwaves	<pre>input=3D1M.pdboutput=3D1M_3.5minimum=1.0maximum=3.5restrict=any_chains,atom_and_hetatmfilter=output_any_atom_typesets</pre>												
wwaves	<pre>input=3D1M.pdboutput=3D1M_4.0 \minimum=1.0maximum=4.0 \restrict=any_chains,atom_and_hetatm \filter=output_any_atom_typesets</pre>												
wwaves	<pre>input=3D1M.pdboutput=3D1M_4.5 \minimum=1.0maximum=4.5 \restrict=any_chains,atom_and_hetatm \filter=output_any_atom_typesets</pre>												
wwaves	<pre>input=3D1M.pdboutput=3D1M_5.0 \minimum=1.0maximum=5.0 \restrict=any_chains,atom_and_hetatm \filter=output_any_atom_typesets</pre>												
	or												
wwaves	-i 3D1M.pdb -o 3D1M_3.0 -a 1.0 -z 3.0 -r 3c -f 6	5 -s											
wwaves	-i 3D1M.pdb -o 3D1M_3.5 -a 1.0 -z 3.5 -r 3c -f (5 -s											
wwaves	-i 3D1M.pdb -o 3D1M_4.0 -a 1.0 -z 4.0 -r 3c -f 6	5 -s											
wwaves	-i 3D1M.pdb -o 3D1M_4.5 -a 1.0 -z 4.5 -r 3c -f 6	5 -s											
wwaves	-i 3D1M.pdb -o 3D1M 5.0 -a 1.0 -z 5.0 -r 3c -f 6	5 -s											

Insulin has bound zinc and phenol atoms. ZNF has bound DNA, zinc, and chlorine atoms. SHH has both bound calcium atoms and zinc atoms. Using the commands above, wwavePDB will return information about the spatial interaction of the proteins and all of their bound molecules.

Upon execution of the commands, wwavePDB creates two files: a PDB-format file containing all atoms found and a wwavePDB sets file that specifies groups of interactions where there is at least one protein atom and one heteroatom.

For example, the following command line identifies histidine atoms that contact, within a distance of one to three Angstroms, the zinc atoms in the insulin structure:

```
wwaves --input=1AIY.pdb --output=1AIY_3.0 \
    --minimum=1.0 --maximum=3.0 \
    --restrict=any_chains,atom_and_hetatm \
    --filter=output_any_atom_type --sets
    Or
wwaves -i 1AIY.pdb -o 1AIY_3.0 -a 1.0 -z 3.0 -r 3c -f 6 -s
```

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 6 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

The above command line would output the following atoms to the output PDB file:

ATOM	452	CG	HIS	В	10	4.435	0.059	-6.753	1.00	0.00	C
ATOM	453	ND1	HIS	В	10	3.819	0.907	-7.659	1.00	0.00	N
ATOM	454	CD2	HIS	В	10	3.421	-0.516	-6.027	1.00	0.00	C
ATOM	455	CE1	HIS	В	10	2.492	0.821	-7.457	1.00	0.00	C
ATOM	456	NE2	HIS	В	10	2.194	-0.032	-6.474	1.00	0.00	N
ATOM	465	CA	LEU	В	11	10.227	-0.639	-8.321	1.00	0.00	C
ATOM	1240	CG	HIS	D	10	2.453	-4.128	-22.489	1.00	0.00	C
ATOM	1241	ND1	HIS	D	10	1.444	-4.137	-21.538	1.00	0.00	N
ATOM	1242	CD2	HIS	D	10	2.258	-2.988	-23.230	1.00	0.00	C
ATOM	1243	CE1	HIS	D	10	0.695	-3.035	-21.730	1.00	0.00	C
ATOM	1244	NE2	HIS	D	10	1.148	-2.300	-22.749	1.00	0.00	N
ATOM	2028	CG	HIS	F	10	-2.439	3.241	-7.063	1.00	0.00	C
ATOM	2029	ND1	HIS	F	10	-2.811	2.334	-8.044	1.00	0.00	N
ATOM	2030	CD2	HIS	F	10	-1.508	2.594	-6.288	1.00	0.00	C
ATOM	2031	CE1	HIS	F	10	-2.113	1.204	-7.836	1.00	0.00	C
ATOM	2032	NE2	HIS	F	10	-1.304	1.308	-6.779	1.00	0.00	Ν
ATOM	2816	CG	HIS	Η	10	2.262	3.500	-22.626	1.00	0.00	C
ATOM	2817	ND1	HIS	Η	10	2.735	2.576	-21.708	1.00	0.00	N
ATOM	2818	CD2	HIS	Η	10	1.333	2.833	-23.385	1.00	0.00	C
ATOM	2819	CE1	HIS	Η	10	2.095	1.415	-21.934	1.00	0.00	C
ATOM	2820	NE2	HIS	Η	10	1.229	1.516	-22.946	1.00	0.00	N
ATOM	3604	CG	HIS	J	10	-1.680	-4.426	-7.266	1.00	0.00	C
ATOM	3605	ND1	HIS	J	10	-0.682	-4.248	-8.209	1.00	0.00	N
ATOM	3606	CD2	HIS	J	10	-1.659	-3.299	-6.480	1.00	0.00	C
ATOM	3607	CE1	HIS	J	10	-0.106	-3.055	-7.971	1.00	0.00	C
ATOM	3608	NE2	HIS	J	10	-0.664	-2.435	-6.927	1.00	0.00	N
ATOM	4392	CG	HIS	L	10	-4.445	-0.231	-22.451	1.00	0.00	C
ATOM	4393	ND1	HIS	L	10	-3.879	0.622	-21.517	1.00	0.00	N
ATOM	4394	CD2	HIS	L	10	-3.402	-0.702	-23.209	1.00	0.00	C
ATOM	4395	CE1	HIS	L	10	-2.552	0.637	-21.733	1.00	0.00	C
ATOM	4396	NE2	HIS	L	10	-2.207	-0.154	-22.754	1.00	0.00	N
HETATM	4729	ZN	ZN		1	0.004	-0.434	-5.873	1.00	0.00	ZN
HETATM	4730	ZN	ZN		2	0.020	-0.362	-23.668	1.00	0.00	ZN

By way of example, the sets file generated by WWAVE for the interaction between 1 and 3 Angstroms ("--minimum=1.0 --maximum=3.0" or "-a 1.0 -z 3.0") specifies the spatial contact between the zinc atoms and the insulin protein residues for further for analysis and the color-coding of the pictures to follow:

DISTANCE	ATOM TYPE	ATOM NAME	ATOM #	CHAIN ID	RES. NAME	RESIDUE #	COORD X	COORD Y	COORD Z
0.000	ATOM	NE	456	 В	HIS	10	2.194	-0.032	-6.474
1.335	ATOM	CE	455	В	HIS	10	2.492	0.821	-7.457
1.393	ATOM	CD	454	В	HIS	10	3.421	-0.516	-6.027
2.220	ATOM	ND	453	В	HIS	10	3.819	0.907	-7.659
2.260	ATOM	CG	452	В	HIS	10	4.435	0.059	-6.753
2.306	HETATOM	ZN	4729	' '	ZN	1	0.004	-0.434	-5.873
	ATOM	ATOM	ATOM	CHAIN	RES.	RESIDUE	COORD	COORD	COORD
DISTANCE	TYPE	NAME	#	ID	NAME	#	Х	Y	Z
0.000	ATOM	NE	1244	 D	HIS	10	1.148	-2.300	-22.749
1.336	ATOM	CE	1243	D	HIS	10	0.695	-3.035	-21.730
1.392	ATOM	CD	1242	D	HIS	10	2.258	-2.988	-23.230
2.220	ATOM	ND	1241	D	HIS	10	1.444	-4.137	-21.538
2.261	ATOM	CG	1240	D	HIS	10	2.453	-4.128	-22.489
2.423	HETATOM	ZN	4730		ZN	2	0.020	-0.362	-23.668

WeiningerWorksTM ^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 7 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

DISTANCE	ATOM TYPE	ATOM NAME	ATOM #	CHAIN ID	RES. NAME	RESIDUE #	COORD X	COORD Y	COORD Z
0.000 1.335 1.392	ATOM ATOM ATOM	NE CE CD	2032 2031 2030	 F F F	HIS HIS HIS	10 10 10	-1.304 -2.113 -1.508	1.308 1.204 2.594	-6.779 -7.836 -6.288
2.219	ATOM	ND	2029	F	HIS	10	-2.811	2.334	-8.044
2.260	ATOM	CG	2028	F	HIS	10	-2.439	3.241	-7.063
2.359	HETATOM	ZN	4729		ZN	1	0.004	-0.434	-5.873
DIGUNCE	ATOM	ATOM	ATOM #	CHAIN	RES.	RESIDUE	COORD	COORD	COORD
			# 						ے
0.000	ATOM	NE	2820	Н	HIS	10	1.229	1.516	-22.946
1.336	ATOM	CE	2819	Н	HIS	10	2.095	1.415	-21.934
1.392	ATOM	CD	2818	Н	HIS	10	1.333	2.833	-23.385
2.219	ATOM	ND	2817	Н	HIS	10	2.735	2.576	-21.708
2.260	ATOM	CG	2816	Н	HIS	10	2.262	3.500	-22.626
2.347	HETATOM	ZN	4730		ZN	2	0.020	-0.362	-23.668
	ATOM	ATOM	ATOM	CHAIN	RES.	RESIDUE	COORD	COORD	COORD
DISTANCE	TYPE	NAME	#	ID	NAME	#	Х	Y	Z
0.000	ATOM	NE	3608	 J	HIS	10	-0.664	-2.435	-6.927
1.336	ATOM	CE	3607	J	HIS	10	-0.106	-3.055	-7.971
1.392	ATOM	CD	3606	J	HIS	10	-1.659	-3.299	-6.480
2.221	ATOM	ND	3605	J	HIS	10	-0.682	-4.248	-8.209
2.261	ATOM	CG	3604	J	HIS	10	-1.680	-4.426	-7.266
2.358	HETATOM	ZN	4729		ZN	1	0.004	-0.434	-5.873
DISTANCE	ATOM TYPE	ATOM NAME	ATOM #	CHAIN ID	RES. NAME	RESIDUE #	COORD X	COORD Y	COORD Z
0 0 0 0	 АТОМ	NE	4396	 Т.	HTS	10	-2 207		-22 754
1.337	ATOM	CE	4395	T.	HIS	10	-2.552	0.637	-21.733
1 391	ATOM	CD	4394	Т.	HIS	10	-3 402	-0.702	-23 209
2 220	ATOM	ND	4393	Т.	HIS	10	-3 879	0 622	-21 517
2 260	ATOM	CG	4392	Т.	HIS	10	-4 445	-0 231	-22 451
2.416	HETATOM	ZN	4730	, _ ,	ZN	2	0.020	-0.362	-23.668
	ATOM	ATOM	ATOM	CHAIN	RES.	RESIDUE	COORD	COORD	COORD
DISTANCE	TYPE	NAME	#	ID	NAME	#	Х	Y	Z
0.000	HETATOM	ZN	4729		ZN	1	0.004	-0.434	-5.873
2.306	ATOM	NE	456	В	HIS	10	2.194	-0.032	-6.474
2.358	ATOM	NE	3608	J	HIS	10	-0.664	-2.435	-6.927
2.359	ATOM	NE	2032	F	HIS	10	-1.304	1.308	-6.779
DISTANCE	ATOM TYPE	ATOM NAME	ATOM #	CHAIN ID	RES. NAME	RESIDUE #	COORD X	COORD Y	COORD Z
0.000	HETATOM	ZN	4730		ZN	2	0.020	-0.362	-23.668
2.347	ATOM	NE	2820	Н	HIS	10	1.229	1.516	-22.946
2.416	ATOM	NE	4396	L	HIS	10	-2.207	-0.154	-22.754
2.423	ATOM	NE	1244	D	HIS	10	1,148	-2.300	-22.749

The output PDB format files can be displayed along with the input PDB file (e.g., 1AIY.pdb) for comparison. Selecting multiple distance ranges in multiple command lines (as detailed above by using "--minimum=" or "-a" and by using "--maximum=" or "-Z") generates a detailed specification of the environments of the heteroatoms as a function of distance.

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 8 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 1a. wwavePDB INPUT: insulin structure cartoon with bound zinc and phenol atoms. The insulin structure cartoon and bound zinc and phenol heteroatoms are shown without any wwavePDB output displayed. The insulin hexamer structure cartoon is shown in yellow. Zinc atoms are shown as red spheres. Phenol residues are shown as white carbon and red oxygen spheres.

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 9 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 1b. wwavePDB INPUT AND OUTPUT: insulin structure cartoon and wwavePDB "<u>1AIY_3.0" output.</u> The insulin structure cartoon is displayed with wwavePDB output ("--output=1AIY_3.0" or "-o 1AIY_3.0"). The insulin hexamer structure cartoon is shown in yellow. Zinc atoms are shown as red spheres. Phenol residues are shown as white carbon and red oxygen spheres. Insulin histidine residue atoms in contact with the zinc are shown as orange carbons, blue nitrogens, and red oxygens. Insulin residues in contact with the phenols but not in contact with the zinc are shown as magenta carbons, blue nitrogens, and red oxygens. The zinc atoms bound by insulin are coordinated by a radial array of three insulin histidine residues ("RAD ZN").

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 10 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 1c. wwavePDB INPUT AND OUTPUT: insulin structure cartoon and wwavePDB "_1AIY_3.5" output. The insulin structure cartoon is displayed with wwavePDB output ("--output=1AIY_3.5" or "-o 1AIY_3.5"). The insulin hexamer structure cartoon is shown in yellow. Zinc atoms are shown as red spheres. Phenol residues are shown as white carbon and red oxygen spheres. Insulin histidine residue atoms in contact with the zinc are shown as orange carbons, blue nitrogens, and red oxygens. Insulin residues in contact with the phenols but not in contact with the zinc are shown as magenta carbons, blue nitrogens.

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 11 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 1d. wwavePDB INPUT AND OUTPUT: insulin structure cartoon and wwavePDB "_1AIY_4.0" output. The insulin structure cartoon is displayed with wwavePDB output ("--output=1AIY_4.0" or "-o 1AIY_4.0"). The insulin hexamer structure cartoon is shown in yellow. Zinc atoms are shown as red spheres. Phenol residues are shown as white carbon and red oxygen spheres. Insulin histidine residue atoms in contact with the zinc are shown as orange carbons, blue nitrogens, and red oxygens. Insulin residues in contact with the phenols but not in contact with the zinc are shown as magenta carbons, blue nitrogens.

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 12 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 1e. wwavePDB INPUT AND OUTPUT: insulin structure cartoon and wwavePDB "_1AIY_4.5" output. The insulin structure cartoon is displayed with wwavePDB output ("--output=1AIY_4.5" or "-o 1AIY_4.5"). The insulin hexamer structure cartoon is shown in yellow. Zinc atoms are shown as red spheres. Phenol residues are shown as white carbon and red oxygen spheres. Insulin histidine residue atoms in contact with the zinc are shown as orange carbons, blue nitrogens, and red oxygens. Insulin residues in contact with the phenols but not in contact with the zinc are shown as magenta carbons, blue nitrogens.

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 13 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 1f. wwavePDB INPUT AND OUTPUT: insulin structure cartoon and wwavePDB "_1AIY_5.0" output. The insulin structure cartoon is displayed with wwavePDB output ("--output=1AIY_5.0" or "-o 1AIY_5.0"). The insulin hexamer structure cartoon is shown in yellow. Zinc atoms are shown as red spheres. Phenol residues are shown as white carbon and red oxygen spheres. Insulin histidine residue atoms in contact with the zinc are shown as orange carbons, blue nitrogens, and red oxygens. Insulin residues in contact with the phenols but not in contact with the zinc are shown as magenta carbons, blue nitrogens.

The insulin example defines one type of interaction of proteins with zinc: three histidines coordinating the zinc arrayed radially ("RAD ZN").

The zinc finger protein (ZFN) illustrates a different interaction of proteins with zinc: two histidines and two cysteines coordinating the zinc arrayed in a tetrahedron ("TET ZN").

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 14 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 2a. wwavePDB INPUT: zinc finger protein (ZNF) structure cartoon with bound zinc and phenol atoms. The zinc finger protein structure cartoon and bound DNA, zinc atoms, and chlorine atoms are displayed without any wwavePDB output. The zinc finger structure cartoon is shown in yellow. Zinc atoms are shown as red spheres. Chlorine atoms are shown as green spheres. DNA is shown as an orange structure cartoon.

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 15 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 2b. wwavePDB INPUT AND OUTPUT: ZNF structure cartoon and wwavePDB output ("_1MEY_3.0"). The zinc finger protein (ZFN) structure cartoon and bound DNA, zinc atoms, and chlorine atoms are displayed with wwavePDB output ("--output=1MEY_3.0") or "-o 1MEY_3.0"). The zinc finger structure cartoon is shown in yellow. Zinc atoms are shown as red spheres. Chlorine atoms are shown as green spheres. DNA is shown as an orange structure cartoon. ZFN histidine residue atoms in contact with the zinc are shown as orange carbons, blue nitrogens, and red oxygens. ZFN cysteine residue atoms in contact with the zinc are shown as cyan carbons, gold sulfurs, blue nitrogens, and red oxygens. On the left ZFN monomer, the ZFN residues are shown as spheres. The zinc atoms bound by ZFN are coordinated by a tetrahedral array of ZFN residues: two cysteines and two histidines ("TET ZN").

Isolation of the radial ("RAD ZN") configuration in insulin and the tetrahedron ("TET ZN") configuration in ZFN allows us to recognize a combination of these configurations in sonic hedgehog protein (SHH).

WeiningerWorksTM^{21 May 2015} https://weiningerworks.com/wwavePDB_tutorial.html</sub> Page 16 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 3a. wwavePDB INPUT: sonic hedgehog protein, fibronectin III domain, a zinc atom, and calcium atoms. The sonic hedgehog protein (SHH), the fibronectin III domain (FIII), a zinc atom, and two calcium atoms are displayed without any wwavePDB output. The SHH structure cartoon is shown in yellow. The FIII structure cartoon is shown in purple. Zinc atoms are shown as red spheres. Calcium atoms are shown as green spheres.

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 17 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 3b. wwavePDB INPUT AND OUTPUT: SHH, FIII domain, ZN atom, CA atoms, and wwavePDB output ("_3D1M_3.0"). The sonic hedgehog protein (SHH), the fibronectin III domain (FIII), a zinc atom, and two calcium atoms are displayed with wwavePDB output ("--output=3D1M_3.0" or "-o 3D1M_3.0"). The SHH structure cartoon is shown in yellow. The FIII structure cartoon is shown in purple. Zinc atoms are shown as red spheres. Calcium atoms are shown as green spheres. SHH residues within 3.0 Angstroms of the zinc and calcium atoms are shown as sticks with yellow carbons, blue nitrogens, and red oxygens. At this distance, atoms from two histidines, an aspartic acid, and a glutamic acid are within 3 Angstroms of the zinc atom. At this distance, multiple aspartic acid and glutamic acid atoms are within 3 Angstroms of the calcium atoms.

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 18 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 3c. wwavePDB INPUT AND OUTPUT: SHH, FIII domain, ZN atom, CA atoms, and wwavePDB output ("_3D1M_3.5"). The sonic hedgehog protein (SHH), the fibronectin III domain (FIII), a zinc atom, and two calcium atoms are displayed with wwavePDB output ("-output=3D1M_3.5" or "-o 3D1M_3.5"). The SHH structure cartoon is shown in yellow. The FIII structure cartoon is shown in purple. Zinc atoms are shown as red spheres. Calcium atoms are shown as green spheres. SHH residues within 3.5 Angstroms of the zinc and calcium atoms are shown as sticks with yellow carbons, blue nitrogens, and red oxygens. At this distance, atoms from three histidines, an aspartic acid, and a glutamic acid are within 3.5 Angstroms of the zinc atom. At this distance, multiple aspartic acid and glutamic acid atoms are within 3.5 Angstroms of the calcium atoms.

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 19 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 3d. wwavePDB INPUT AND OUTPUT: SHH, FIII domain, ZN atom, CA atoms, and wwavePDB output ("_3D1M_4.0"). The sonic hedgehog protein (SHH), the fibronectin III domain (FIII), a zinc atom, and two calcium atoms are displayed with wwavePDB output ("--output=3D1M_4.0" or "-o 3D1M_4.0"). The SHH structure cartoon is shown in yellow. The FIII structure cartoon is shown in purple. Zinc atoms are shown as red spheres. Calcium atoms are shown as green spheres. SHH residues within 4.0 Angstroms of the zinc and calcium atoms are shown as sticks with yellow carbons, blue nitrogens, and red oxygens. At this distance, atoms from three histidines, an aspartic acid, and a glutamic acid are within 4 Angstroms of the zinc atom. At this distance, multiple aspartic acid and glutamic acid atoms are within 4 Angstroms of the calcium atoms.

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 20 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 3e. wwavePDB INPUT AND OUTPUT: SHH, FIII domain, ZN atom, CA atoms, and wwavePDB output ("_3D1M_4.5"). The sonic hedgehog protein (SHH), the fibronectin III domain (FIII), a zinc atom, and two calcium atoms are displayed with wwavePDB output ("--output=3D1M_4.5" or "-o 3D1M_4.5"). The SHH structure cartoon is shown in yellow. The FIII structure cartoon is shown in purple. Zinc atoms are shown as red spheres. Calcium atoms are shown as green spheres. SHH residues within 4.5 Angstroms of the zinc and calcium atoms are shown as sticks with yellow carbons, blue nitrogens, and red oxygens. At this distance, atoms from five histidines, an aspartic acid, and a glutamic acid are within 4.5 Angstroms of the zinc atom. At this distance, two histidines, multiple aspartic acid and glutamic acid atoms are within 4.5 Angstroms of the calcium atoms. In addition, atoms from FIII are within 4.5 Angstroms of the SHH is bound to the SHH in an alternative binding position for the zinc atom.

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 21 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 3f. wwavePDB INPUT AND OUTPUT: SHH, FIII domain, ZN atom, CA atoms, and wwavePDB output ("_3D1M_5.0"). The sonic hedgehog protein (SHH), the fibronectin III domain (FIII), a zinc atom, and two calcium atoms are displayed with wwavePDB output ("--output=3D1M_5.0" or "-o 3D1M_5.0"). The SHH structure cartoon is shown in yellow. The FIII structure cartoon is shown in purple. Zinc atoms are shown as red spheres. Calcium atoms are shown as green spheres. SHH residues within 5.0 Angstroms of the zinc and calcium atoms are shown as sticks with yellow carbons, blue nitrogens, and red oxygens. At this distance, atoms from five histidines, an aspartic acid, and a glutamic acid are within 5.0 Angstroms of the zinc atom. At this distance, two histidines, multiple aspartic acid and glutamic acid atoms are within 5.0 Angstroms of the calcium atoms. In addition, atoms from FIII are within 5.0 Angstroms of the SHH is bound to the SHH in an alternative binding position for the zinc atom.

WeiningerWorksTM ^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 22 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

Figure 3g. wwavePDB INPUT AND OUTPUT: The SHH-FIII Zn switch ("_3D1M_5.0"). The sonic hedgehog protein (SHH), the fibronectin III domain (FIII), a zinc atom, and two calcium atoms are displayed with wwavePDB output ("--output=3D1M_5.0" or "-o 3D1M_5.0"). The SHH structure cartoon is shown in yellow. The FIII structure spheres is shown with purple carbons, gold sulfurs (including C1 residue sulfur), blue nitrogens, and red oxygens. The zinc atom is shown as a brown sphere. Calcium atoms are shown as green spheres. SHH residues within 5 Angstroms of the zinc and calcium atoms are shown as sticks with yellow carbons, blue nitrogens, and red oxygens with the exception of the five histidine residues shown as spheres. The SHH histidines spheres in the wwavePDB output are shown with cyan carbons, blue nitrogens, and red oxygens and are labelled H1, H2, H3, H4, and H5. Alternative radially coordinated zinc positions are shown bounded by magenta, green, and yellow dashed lines. An alternative tetrahedrally coordinated zinc position is shown bounded by white dashed lines.

Bound zinc can be coordinated radially ("RAD ZN") by any of the triangle of residues labelled:

- H1, H2, and H3
- H2, H3, and H4
- H3, H4, and H5

Bound zinc can be coordinated tetrahedrally ("TET ZN") with the four residues labelled:

• H3, H4, H5, and C1 (a cysteine from FIII)

WeiningerWorksTM^{21 May 2015} <u>https://weiningerworks.com/wwavePDB_tutorial.html</u> Page 23 Copyright © 2015 by Weininger Works Incorporated. All Rights Reserved

The basis of the switch is determined by whether the zinc is coordinated internally to SHH or whether the zinc is coordinated between SHH and the glycoprotein. When the switch is "off", the bound zinc is bound by the SHH only. When the switch is "on", the bound zinc is bound by both SHH and FIII. This switch mechanism is also found between SHH and other glycoproteins such as NCAM.

The structural interaction between SHH and glycoproteins becomes interpretable through analyzing the zinc environments of multiple unrelated proteins with wwavePDB.