
Weininger, A.; Weininger S. "Using WWaveMarkersTM and building WWaveCoresTM" Weininger Works Technical Notes (2013) Jul 22;2:1-19

Neuraminidase active site mapping using wwavePDB and twwistPDB

In this example, one set of WWaveMarkersTM was derived from wwavePDB analysis of six closely related neuraminidase structures. $3B7E^2$ was used as the reference structure onto which the other neuraminidase structures were mapped. A seventh structure, $4FVK^6$, and an eighth structure, $4GEZ^7$, were of a highly divergent N10 neuraminidase from a bat virus. The first set of WWaveMarkersTM could not be used with the N10 neuraminidase structures due to mutations of N10 neuraminidase residues whose atoms were in the first set of WWaveMarkersTM. A second set of WWaveMarkersTM was derived from the wwavePDB analysis of $4FVK^6$ and $4GEZ^7$ relative to the reference structure $3B7E^2$. The structures analyzed in this study were:

$1W1X^1$	neuraminidase subtype N6 in complex with sialic acid
$2HTU^3$	neuraminidase subtype N8 in complex with peramivir (BioCryst)
$2HU4^3$	neuraminidase subtype N1 in complex with oseltamivir (Roche)
$3B7E^2$	neuraminidase subtype N1 (1918 a/brevig) in complex with zanamivir (GSK)
$2QWA^4$	neuraminidase subtype N9 with R292K mutation
$1A14^{5}$	neuraminidase subtype N9 with engineered VH and VL antibody domains bound
4FVK ⁶	neuraminidase subtype N10 with divergent sequence
$4GEZ^7$	neuraminidase subtype N10 with divergent sequence

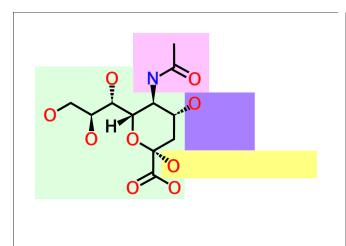
The first set of neuraminidase WWaveMarkersTM (atom serial # - residue - residue #) were:

PDB	NH	0	ОН
$3B7E^2$	# 269 ARG 118	# 744 TRP 178	# 2468 TYR 406
1W1X ¹	# 3308 ARG 1124	# 3779 TRP 1185	# 5497 TYR 1412
2HTU ³	#279 ARG 118	# 753 TRP 180	# 2489 TYR 411
2HU4 ³	# 270 ARG 118	# 741 TRP 178	# 2458 TYR 406
2QWA ⁴	# 269 ARG 118	# 744 TRP 178	# 2531 TYR 406
1A14 ⁵	# 296 ARG 118	# 774 TRP 178	#2533 TYR 406

The distances (D, in Angstroms) between the first set of neuraminidase WWaveMarkersTM are:

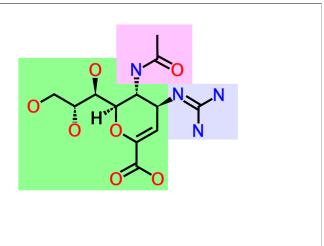
PDB	$\mathbf{D}(O \leftrightarrow NH)$	$\mathbf{D}(\ \mathrm{O} \leftrightarrow \mathrm{OH}\)$	$\mathbf{D}(\ \mathrm{NH} \leftrightarrow \mathrm{O}\)$
$3B7E^2$	744 ↔ 269: 9.706	744 ↔2468: 8.834	269 ↔2468: 4.321
$1W1X^1$	3779 ↔3308: 9.961	3779 ↔5497: 8.654	3308 ↔5497: 4.267
2HTU ³	753 ↔ 279: 9.987	753 ↔2489: 8.617	279 ↔2489: 4.552
2HU4 ³	741 ↔ 270: 9.732	741 ↔2458: 8.735	270 ↔2458: 4.329
2QWA ⁴	744 ↔ 269: 9.919	744 ↔2531: 8.464	269 ↔2531: 4.261
1A14 ⁵	774 ↔ 269: 10.558	774 ↔2533: 8.587	269 ↔2533: 4.773

The first set of neuraminidase WWaveMarkersTM are shown in the image above color coded according to element (NO).

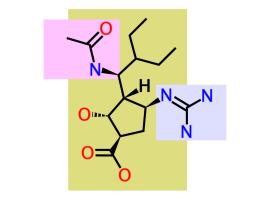

The second set of neuraminidase WWaveMarkersTM (atom serial # - residue - residue #) were:

PDB	0	0	0
3B7E ²	# 262 ARG 118	# 1089 ARG 224	# 1487 GLU 276
4FVK ⁶	# 3169 ARG 118	# 3974 ARG 224	# 4385 GLU 276
4GEZ ⁷	# 8859 ARG 111	# 9664 ARG 215	#10075 GLU 267

The distances (D, in Angstroms) between the second set of neuraminidase WWaveMarkersTM are:


PDB	$\mathbf{D}(O \leftrightarrow NH)$	$\mathbf{D}(\ \mathrm{O}\leftrightarrow\mathrm{OH}\)$	$\mathbf{D}(\text{ NH} \leftrightarrow \text{O})$
$3B7E^2$	262 ↔ 1089: 14.730	262 ↔ 1487: 15.001	1089 ↔ 1487: 8.332
4FVK ⁶	3169 ↔ 3974: 14.197	3169 ↔ 4385: 15.190	3974 ↔ 4385: 8.793
4GEZ ⁷	8859 ↔ 9664: 14.178	8859 ↔ 10075: 15.353	9664 ↔ 10075: 8.924

Neuraminidase binding compounds


sialic acid1 (also named "SIA")

MUNANA

KDN

zanamivir² (also named "ZMR")

oseltamivir³ (also named "G39")

peramivir³ (also named "BCZ")

WeiningerWorks TM 22 July 2013 http://www.weiningerworks.com/neuraminidase1.html Page 4 Copyright © 2013 by Weininger Works Incorporated All Bills 14 B

(The following SMILES highlight colors match above binding compound structure highlight colors.)

sialic acid (also named "SIA")

IUPAC Name: (2R.4S.5R.6R)-5-acetamido-2.4-dihydroxy-6-[(1R.2R)-1.2.3-trihydroxypropylloxane-2-

carboxylic acid

SMILES: $CC(=O)N[\underline{C@H}]1[C@H]([C@H](O)[C@H](O)CO)O[C@](C(=O)O)(\underline{O})C[C@@H]1\underline{O}$

MUNANA (also named "MUS")

IUPAC Name: (2S,4S,5R,6R)-5-acetamido-4-hydroxy-2-(4-methyl-2-oxochromen-7-yl)oxy-6-[(1R,2R)-1,2,3-

trihydroxypropyl]oxane-2-carboxylic acid

SMILES: CC(=O)N[C@H]1[C@H]([C@H](O)[C@H](O)CO)O[C@H](C(=O)O)

(Oc2cc3oc(=O)cc(C)c3cc2)C[C@@H]1O

KDN

IUPAC Name: (2S,4S,5R,6R)-2,4,5-trihydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid $\frac{\mathsf{O}[\mathsf{C}@\mathsf{H}]}{\mathsf{O}[\mathsf{C}@\mathsf{H}]}([\mathsf{C}@\mathsf{H}](\mathsf{O})[\mathsf{C}@\mathsf{H}](\mathsf{O})\mathsf{C}\mathsf{O})\mathsf{O}[\mathsf{C}@\mathsf{O}](\mathsf{O})}(\mathsf{C}(\mathsf{=}\mathsf{O})\mathsf{O})\mathsf{C}[\mathsf{C}@\mathsf{M}]\mathsf{1}\boxed{\mathsf{O}}$ SMILES:

zanamivir (also named "ZMR")

IUPAC Name: (2R,3R,4S)-3-acetamido-4-(diaminomethylideneamino)-2-[(1R,2R)-1,2,3-trihydroxypropyl]-

3,4-dihydro-2H-pyran-6-carboxylic acid

SMILES: $CC(=O)N[\underline{C@H}]1[\underline{C@H}]([\underline{C@H}](O)[\underline{C@H}](O)CO)OC(C(=O)O)=C[\underline{C@@H}]1N=C(N)N$

oseltamivir (also named "G39")

IUPAC Name: (3R,4R,5S)-4-acetamido-5-amino-3-pentan-3-yloxycyclohexene-1-carboxylic acid

SMILES: $CC(=O)N[\underline{C@H}]1[\underline{C@H}](OC(CC)CC)C=C(C(=O)O)C[\underline{C@@H}]1N$

peramivir (also named "BCZ")

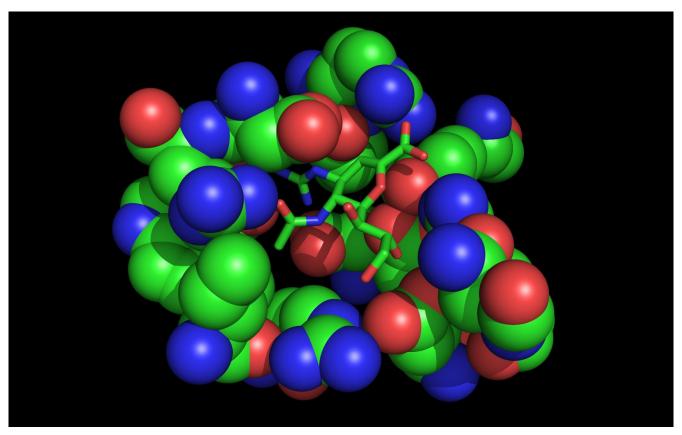
IUPAC Name: (1S,2S,3S,4R)-3-[(1S)-1-acetamido-2-ethylbutyl]-4-(diaminomethylideneamino)-2-

hydroxycyclopentane-1-carboxylic acid

SMILES: CC(=0)NN[C@@H](C(CC)CC)[C@@H]1[C@H](O)[C@@H](C(=O)O)C[C@H]1

N=C(N)N

References

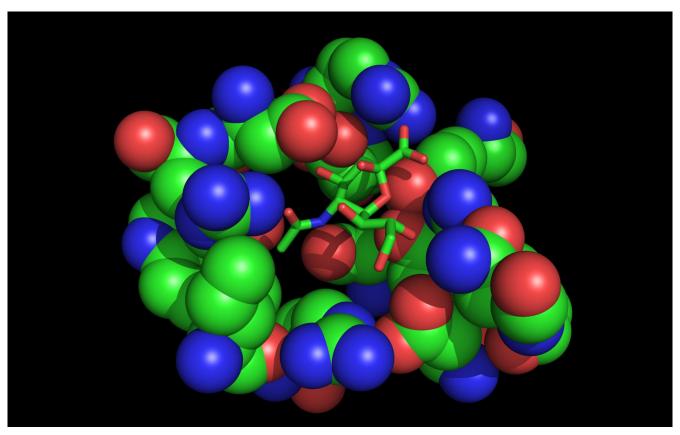

```
<sup>1</sup> 1W1X (neuraminidase complexed with sialic acid).
 Rudino-Pinera, E.; Tunnah, P.; Crennell, S.J.; Webster, R.G.; Laver, W.G.; Garman, E.F.;
 "The Crystal Structure Of Type A Influenza Virus Neuraminidase Of The N6 Subtype
 Reveals The Existence Of Two Separate Neu5ac Binding Sites"
 To Be Published/REVDAT 2H24-FEB-09 1W1X
```

² Protein Data Bank ID: 3B7E (neuraminidase complexed with zanamivir). Xu, X.; Zhu, X.; Dwek, R.A.; Stevens, J.; Wilson, I.A; "Structural characterization of the 1918 influenza virus H1N1 neuraminidase." J. Virology (2008) 82: 10493-10501

³ 2HTU (neuraminidase complexed with peramivir). 2HU4 (neuraminidase complexed with oseltamivir). Russell, R.J.; Haire, L.F.; Stevens, D.J.; Collins, P.J.; Lin, Y.P.; Blackburn, G.M.; Hay, A.J.; Gamblin, S.J.; Skehel, J.J.; "The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design." Nature (2006) 443: 45-49

⁴ 2QWA (R292K mutant neuraminidase). Varghese, J.N.; Smith, P.W.; Sollis, S.L.; Blick, T.J.; Sahasrabudhe, A.; McKimm-Breschkin, J.L.; Colman, P.M.; "Drug design against a shifting target: a structural basis for resistance to inhibitors in a variant of influenza virus neuraminidase." Structure (1998) 6: 735-746

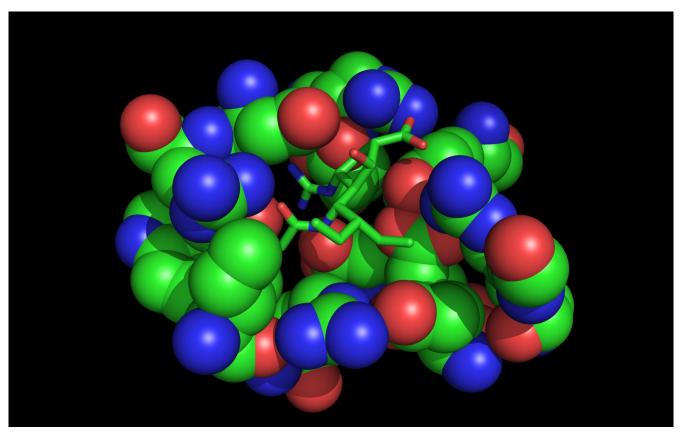
- ⁵ 1A14 (neuraminidase complexed with VH and CL antibody domains). Malby, R.L.; McCoy, A.J.; Kortt, A.A.; Hudson, P.J.; Colman, P.M.; "Three-dimensional structures of single-chain Fv-neuraminidase complexes." J.Mol.Biol. (1998) 279: 901-910
- ⁶ 4FVK (divergent neuraminidase isolated from bats). Li, O.; Sun, X.M.; Li, Z.X.; Liu, Y.; Vavricka, C.J.; Oi, J.X.; Gao G.F.; "Structural and functional characterization of neuraminidase-like molecule n10 derived from bat influenza a virus." Proc.Natl.Acad.Sci.USA (2012) 109: 18897-18902
- ⁷ 4GEZ (divergent neuraminidase isolated from bats). Zhu, X.; Yang, H.; Guo, Z.; Yu, W.; Carney, P.J.; Li, Y.; Chen, L.M.; Paulson, J.C.; Donis, R.O.; Tong, S.; Stevens, J.; Wilson, I.A.; "Crystal structures of two subtype N10 neuraminidase-like proteins from bat influenza A viruses reveal a diverged putative active site." Proc.Natl.Acad.Sci.USA (2012) 109: 18903-18908



wwavePDB-identified neuraminidase residues binding zanamivir

Shown here are the wwavePDB-identified neuraminidase residues (spheres) that contact bound zanamivir atoms (sticks) from 3B7E².

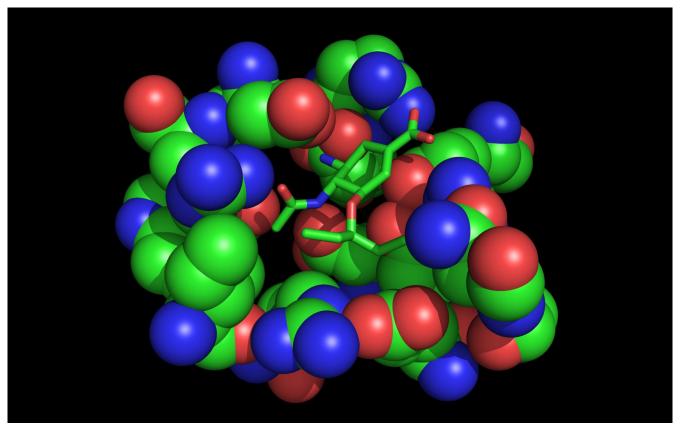
Zanamivir is used as the reference structure and maintains its coordinate system in this example.



wwavePDB-identified neuraminidase residues binding sialic acid

Shown here are the wwavePDB-identified neuraminidase residues (spheres) that contact bound sialic acid atoms (sticks) from 1W1X¹.

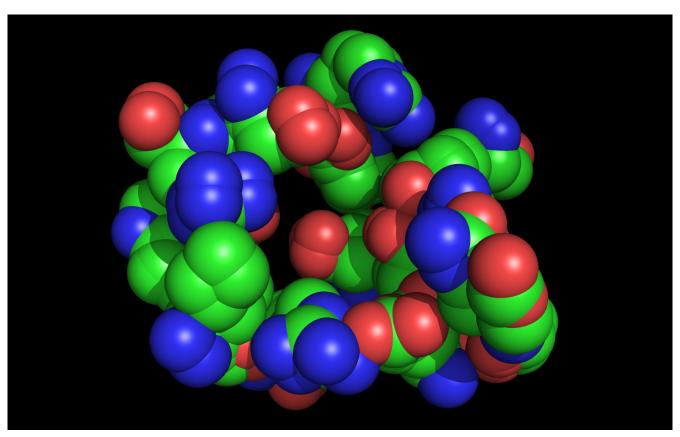
1W1X¹ was mapped onto 3B7E² by twwistPDB.



wwavePDB-identified neuraminidase residues binding peramivir

Shown here are the wwavePDB-identified neuraminidase residues (spheres) that contact bound peramivir atoms (sticks) from 2HTU³.

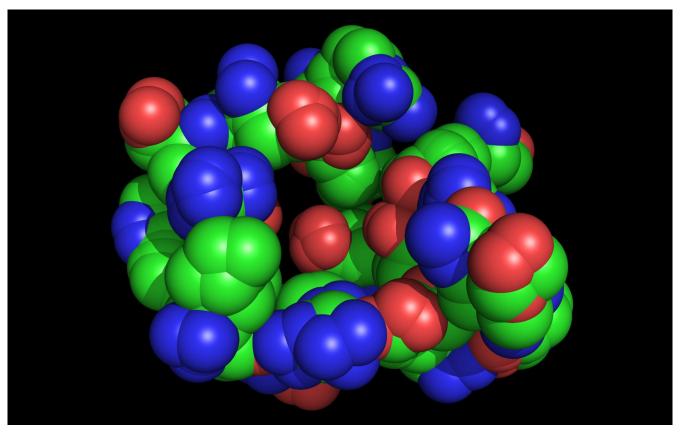
2HTU³ was mapped onto 3B7E² by twwistPDB.



wwavePDB-identified neuraminidase residues binding oseltamivir

Shown here are the wwavePDB-identified neuraminidase residues (spheres) that contact bound oseltamivir atoms (sticks) from 2HU4³.

2HU4³ was mapped onto 3B7E² by twwistPDB.

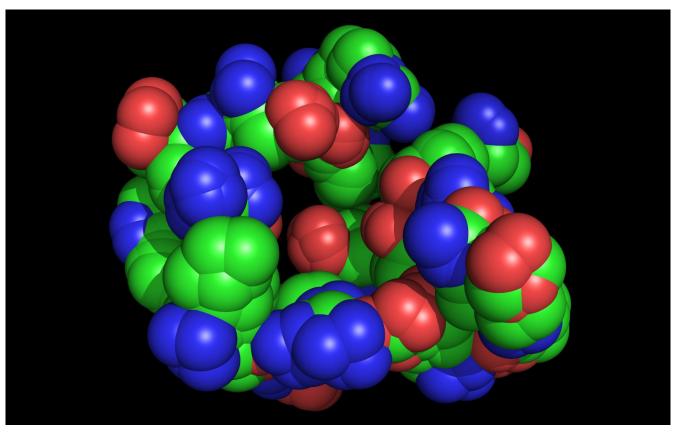


Neuraminidase WWaveCoresTM from two structures

Shown here are neuraminidase WWaveCoresTM from two structures.

3B7E²-selected and reoriented N1 neuraminidase residue spheres are color-coded according to element (CNO).

2HU4³-selected and reoriented N1 neuraminidase residue spheres are color-coded according to element (CNO).


Neuraminidase WWaveCoresTM from three structures

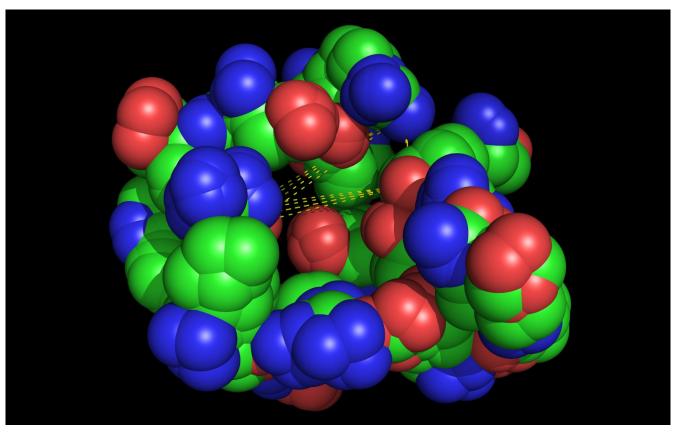
Shown here are neuraminidase WWaveCoresTM from three structures.

3B7E2-selected and reoriented N1 neuraminidase residue spheres are color-coded according to element (CNO).

2HU4³-selected and reoriented N1 neuraminidase residue spheres are color-coded according to element (CNO).

2HTU³-selected and reoriented N8 neuraminidase residue spheres are color-coded according to element (CNO).

Neuraminidase WWaveCoresTM from four structures


Shown here are neuraminidase WWaveCoresTM from four structures.

3B7E²-selected and reoriented N1 neuraminidase residue spheres are color-coded according to element (CNO).

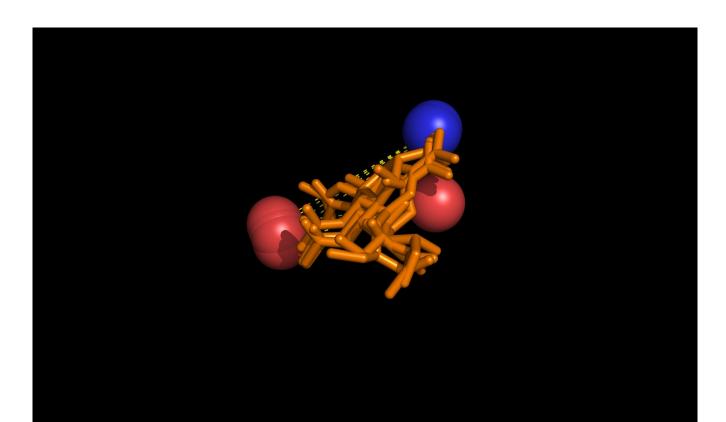
2HU4³-selected and reoriented N1 neuraminidase residue spheres are color-coded according to element (CNO).

2HTU³-selected and reoriented N8 neuraminidase residue spheres are color-coded according to element (CNO).

1W1X¹-selected and reoriented N6 neuraminidase residue spheres are color-coded according to element (CNO).

Neuraminidase WWaveCoresTM with WWaveMarkersTM

Shown here are neuraminidase WWaveCoresTM.


Yellow lines are drawn between the WWaveMarkersTM.

3B7E²-selected and reoriented N1 neuraminidase residue spheres are color-coded according to element (CNO).

2HU4³-selected and reoriented N1 neuraminidase residue spheres are color-coded according to element (CNO).

2HTU³-selected and reoriented N8 neuraminidase residue spheres are color-coded according to element (CNO).

1W1X¹-selected and reoriented N6 neuraminidase residue spheres are color-coded according to element (CNO).

Neuraminidase-bound molecules and WWaveMarkersTM

Shown here are the twwistPDB-reoriented neuraminidase bound molecules and the neuraminidase WWaveMarkersTM.

Yellow lines are drawn between the WWaveMarkersTM.

The WWaveMarkersTM atom spheres are color coded according to element (NO).

3B7E²-reoriented zanamivir sticks are colored orange.

2HU4³-reoriented oseltamivir sticks are colored orange.

2HTU³-reoriented peramivir sticks are colored orange.

1W1X¹-reoriented sialic acid sticks are colored orange.

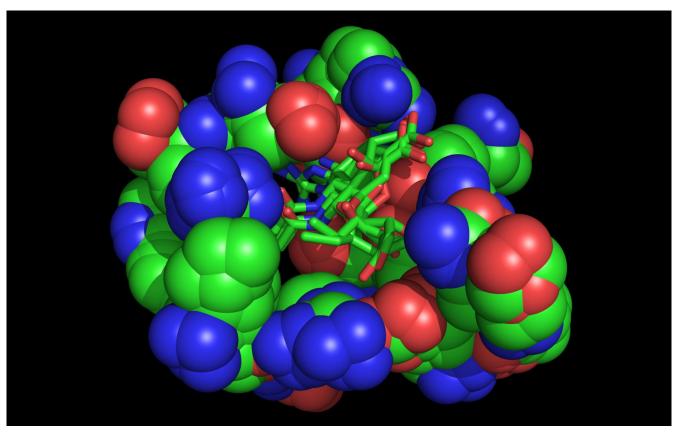
WWaveCoresTM: neuraminidase and bound molecules

Shown here are neuraminidase WWaveCoresTM enclosing neuraminidase-bound molecule WWaveCoresTM.

3B7E2--selected and reoriented N1 neuraminidase residue spheres are color-coded according to element (CNO).

2HU4³-selected and reoriented N1 neuraminidase residue spheres are color-coded according to element (CNO).

2HTU³-selected and reoriented N8 neuraminidase residue spheres are color-coded according to element (CNO).


1W1X1-selected and reoriented N6 neuraminidase residue spheres are color-coded according to element (CNO).

3B7E²-reoriented zanamivir spheres are colored orange.

2HU4³-reoriented oseltamivir spheres are colored orange.

2HTU³-reoriented peramivir spheres are colored orange.

1W1X¹-reoriented sialic acid spheres are colored orange.

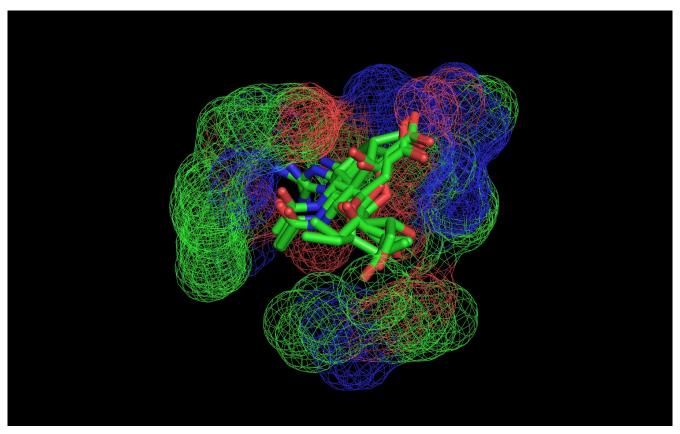
Neuraminidase WWaveCoresTM and bound molecules

Shown here are neuraminidase WWaveCoresTM enclosing neuraminidase-bound molecules.

3B7E2--selected and reoriented N1 neuraminidase residue spheres are color-coded according to element (CNO).

2HU4³-selected and reoriented N1 neuraminidase residue spheres are color-coded according to element (CNO).

2HTU³-selected and reoriented N8 neuraminidase residue spheres are color-coded according to element (CNO).


1W1X1-selected and reoriented N6 neuraminidase residue spheres are color-coded according to element (CNO).

3B7E²-reoriented zanamivir sticks are color-coded according to element (CNO).

2HU4³-reoriented oseltamivir sticks are color-coded according to element (CNO).

2HTU³-reoriented peramivir sticks are color-coded according to element (C N O).

1W1X¹-reoriented sialic acid sticks are color-coded according to element (CNO).

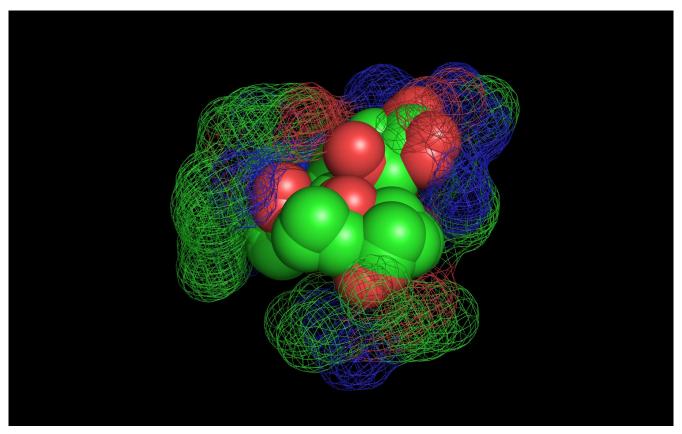
Mesh contact WWaveCoresTM and bound molecules

Shown here are mesh neuraminidase contact atom WWaveCoresTM enclosing neuraminidase-bound molecules.

The mesh surrounding 3B7E2-selected and reoriented N1 neuraminidase residues is color-coded according to element (CNO).

The mesh surrounding 2HU4³-selected and reoriented N1 neuraminidase residues is color-coded according to element (CNO).

The mesh surrounding 2HTU³-selected and reoriented N8 neuraminidase residues is color-coded according to element (C N O).


The mesh surrounding 1W1X1-selected and reoriented N6 neuraminidase residues is color-coded according to element (CNO).

3B7E²-reoriented zanamivir sticks are color-coded according to element (CNO).

2HU4³-reoriented oseltamivir sticks are color-coded according to element (CNO).

2HTU³-reoriented peramivir sticks are color-coded according to element (C N O).

1W1X¹-reoriented sialic acid sticks are color-coded according to element (CNO).

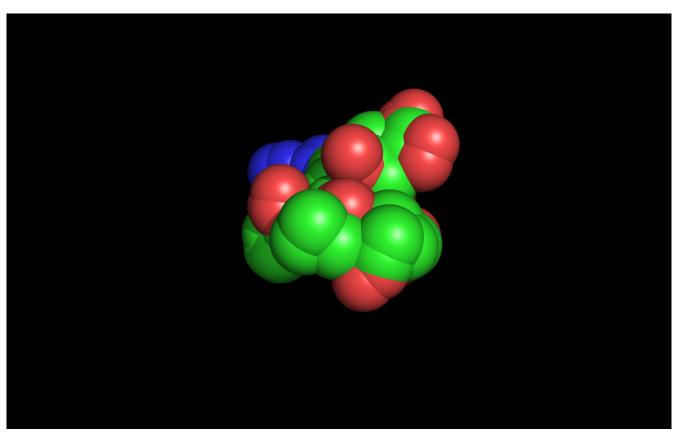
Mesh contact WWaveCoresTM and bound molecules

Shown here are mesh neuraminidase contact atom WWaveCoresTM enclosing neuraminidase-bound molecules.

The mesh surrounding 3B7E2-selected and reoriented N1 neuraminidase residues is color-coded according to element (CNO).

The mesh surrounding 2HU4³-selected and reoriented N1 neuraminidase residues is color-coded according to element (CNO).

The mesh surrounding 2HTU³-selected and reoriented N8 neuraminidase residues is color-coded according to element (C N O).


The mesh surrounding 1W1X1-selected and reoriented N6 neuraminidase residues is color-coded according to element (CNO).

3B7E²-reoriented zanamivir spheres are color-coded according to element (CNO).

2HU4³-reoriented oseltamivir spheres are color-coded according to element (CNO).

2HTU³-reoriented peramivir spheres are color-coded according to element (C N O).

1W1X¹-reoriented sialic acid spheres are color-coded according to element (C N O).

Neuraminidase bound molecule WWaveCoresTM

Shown here are the neuraminidase bound molecule WWaveCoresTM.

3B7E²-reoriented zanamivir spheres are color-coded according to element (CNO).

2HU4³-reoriented oseltamivir spheres are color-coded according to element (CNO).

2HTU³-reoriented peramivir spheres are color-coded according to element (C N O).

 $1W1X^1$ -reoriented sialic acid spheres are color-coded according to element ($\mathbb{C} \ \mathbb{N} \ \mathbb{O}$).